HYDRODYNAMICS OF TUBES OF VARYING
CROSS SECTION

I. L. Povkh and N. V. Finoshin UDC 532.517.2:518.12

A method is suggested of reducing the hydrodynamic resistance by replacing circular cylindrical tubes (CT)
by socalled asymmetrical wavy tubes of varying cross section with long exist cone and short nozzle portions.
Mathematical simulationof laminar motion of an incompressible fluid (the Navier— Stokes equations) has shown
that a change in geometric parameters can change the resistance substantially, making it larger or smaller than
the resistance of an ordinary cylindrical tube. The velocity and pressure fields, friction resistances, pressure
profiles, and total resistances of such tubes are given. An experiment has been carried out. A numerical
experiment provides a resistance reduced by up to 80%, while the physical experiment provides a reduction
by 50%.

A substantial fraction of the total energy generated by mankind is spent on overcoming the hydrodynamic resistance
during motion of liquids and gases along tubes. Such losses occur in main pipelines (petroleum, gas, gasoline, ammonia, and
so on), in thermal and gas pipelines, aqueduct networks of cities, rural areas and enterprises, and, finally, in element tubes
of all machines and structures. '

Attempts of loss reduction have so far not been very successful. The use of small amounts of polymers and surface-
active materials (SAM), which were investigated for many years at the Donetsk State University [1], gave fairly good results
under laboratory conditions (loss reduction by up to 60%) and for a commercial pipeline of diameter 300 mm and length 9 km
(reduction by 50%). Due to lack of required SAM the method has not been extended.

1. General Considerations. Qualitative Estimate of Effectiveness. In what follows we consider the method suggested
by us [4], valid for both liquids and gases. This method consists of replacing cylindrical circular tubes with a constant
transverse cross section, and consequently with constant discharge and maximum velocities over length, by a tube with a
periodically varying transverse cross section, and consequently a discharge with maximum velocity. Tubes of Varying
Transverse Cross Section (TVC) can be called wavy or asymmetrically wavy.

Theoretically, such a periodic flow can create either a corresponding variation of the tube radius, or an insertion core
in a constant radius tube, with a transverse cross section varying with length. The second tube structure is very complicated
to prepare, and, obviously, has a very substantial surface moisture, resulting in high friction losses in comparison with an
ordinary tube. In this case, when coaxial tubes are used (in drilling instruments, in "tube within a tube” heat exchangers, and
so on) it is advisable to enhance their effectiveness by replacing the central tube by a TVC.

In our problem we consider tubes of varying transverse cross section (Fig. 1) with a periodically varying radius. These
tubes consist of a set of an infinite number of Venturi tubes. It is seen from Fig. 1 that the basic geometric parameters of a
TVC are: the wave length [, the exit cone and nozzle portions of length /, and [, the amplitude @, and the radius rg of the
Cylindrical Tube (CT). In dimensionless form they are:
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The radius r, of a tube of varying cross section can be represented in the form:
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Fig. 1. Geometric characteristics of TVC.

where 1 is the radius of a cylindrical tube, equivalent to a tube of varying cross section with the same surface area and the

same length [y, and (x) is a sign-varying periodic function with period /. For x = nly, ¢ = 1 and for x = nl,, ¢ = —1,
0

f ¢(x)dx = 0. In principle ¢(x} must be a continuous function of the coordinate x, having a finite derivative at ail
points. 0

while

In dimensionless form Eq. (1) is written in the form
re=1+ag (x). 3

In our first theoretical and experimental studies [2] the generating TVC was selected to be a harmonic function

2nx ) ) 3)

@ {x) = cos (

Consequently, for x varying from zero to x = /, we have exit cone flow, and in the x region from I, to x = [y —
nozzle flow.

The selection of this ¢(x) for the early studies is explained by its relative simplicity and by the reasoning that if
satisfactory effects are obtained for this hydrodynamically incomplete enclosure, then the possibility opens up of substantial
enhancement of the effect by shape improvement of the function ¢(x)

It is well known that in the exit cones (U’ < 0) the friction is always smaller than in a CT, and theoretically one can
obtain an exit cone with vanishing friction. In nozzles (U’ > 0) the friction is larger than in a CT. Consequently, varying the
length of the exit cone and nozzle parts of the TVC, one can control friction losses, making them larger or smaller than in an
ordinary tube.

We note that when the velocity profiles, and consequently the discharge and maximum velocity U, (x), are not constant
along the tube length, energy losses are generated in the tube besides the loss due to friction, consumed by the deformation
in the velocity profiles. These are the so-called pressure or shape losses, or their corresponding resistances.

These losses are usually large for suddenly expanded and constricted flows, i.e., in the presence of interrupted flows.
In our problem we treat only uninterrupted flows, and the fraction of shape loss is small.

We carry out initially a qualitative, quite coarse, estimate of the possibilities of loss control during motion of liquids
and gases in a TVC. For this purpose we further consider friction and shape losses.

The total resistance, equal to the friction resistance in a CT, is:

Xo = qrdAPy = 21rylyv,. “
The friction resistance of a TVC is
Ie lo
Xg=2n { Tordx 4 2n | wrds, ©)
) !

e
where the subscripts 0, e, and n denote the corresponding values for a CT, and the exit cone and nozzle portions of a TVC.

374



TABLE 1. Ratio of Friction Forces in TVC and CT

78 0,2 0,4 0,6 0,8 0,9

1,41{1,6 {1,2 |1,41,6 {1,2 |1,4

K;l1,2 ,1,4 1,6 11,2 1,6 |1,4 {1,6 iQ,O

Xf10,96]1,12 1,28 0,72}0,84} 0,96 0,48I0,56 0,64)0,24 O,28|0,32 0,14)0,16‘0,20

If the mean values of friction stresses in the exit cone and nozzle are represented in terms of the corresponding values
in a cylindrical tube 7, = 73 in the form 7, = K 7y and 7,, = K7y, we then obtain approximately the ratio of the total friction
resistance of a TVC to the total resistance in a CT, equal to

< X { la -
X'f:: £ =K1“E+K2( "‘——”'—') =(K1'—K2) le+ Kz. (6)
Xo Ly ly

The values of these coefficients can be estimated from results of numerical calculations.
In the total absence of friction in the exit cone part of the tube (an ideal exit cone) K; = 0, and

Xe= K (1 —TI) = K,

The ratio of friction resistance in a TVC to the total resistance (due to the same friction) of a CT for various K, and
[, values is presented in Table 1. It follows from the table that the length variation of the exit cone part of a TVC can be
controlled substantially by the friction resistance. Keeping in mind the Reynolds analogy, we assume that in these tubes one
can control both heat- and mass-transfer.

We further consider the estimate of pressure or shape losses. Since these losses are substantial for sudden expansions
and constrictions, the value of the loss coefficient refers to the kinetic energy either at the inlet or at the outlet. We need to
determine the fraction of these losses in total losses of a TVC of length Jy. The shape resistance coefficient is then

he=C(n) —-, O]

where {(n) is the loss coefficient, depending on the extent of compression for a TVC, equal to

L _etar _ (gap

(ro—af  (1—ap

Since 4 is usually less than 0.1, n is small and so0 is {(n). In a cylindrical tube n = 1, {(n) = 0, and ry/ly = 0.

From the analysis presented it follows that in the limiting case in which the whole length of the selected portion of the
tube consists only of the exit cone [ = 1, in which friction is absent and instead of the nozzle portion sudden constriction takes
place, a staggered tube is obtained, whose resistance is determined only by the shape resistance, i.e., x; = x..

Since the resistance of a cylindrical tube is proportional to 7gly, while the resistance of a staggered tube can be
calculated by the Bord equation, one can always select a length [y, for which the resistance of the staggered tube is smaller than
the cylindrical resistance.

Consequently, for motion of liquids and gases in tubes of circular transverse cross section there exist two limiting cases:
1) cylindrical tubes (of constant transverse cross section), whose hydrodynamic resistance is due to friction only; 2) tubes of
varying transverse cross section, consisting of an ideal exit cone (friction is absent) and a sudden constriction, staggered tubes
whose total resistance is determined only by the shape resistance.

Naturally, there exists an infinite manifold of tubes of varying cross section, whose resistance is determined by the
friction resistance and the shape (pressure) resistance. Varying only the lengths of the exit cone and nozzle portions for the
corresponding choice of r(x), one can decrease or increase substantially the hydrodynamic resistance (and consequently, the
heat transfer) in comparison with the hydrodynamic resistance of a CT, having the same surface area as the TVC. In the
limiting case one can obtain a staggered TVC, in which the energy losses are smaller than in the equivalent circular cylindrical
tube. 7

Below we provide a numerical solution and a physical experiment, confirming the qualitative analysis provided.
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Fig. 2. Velocity variation along the axis for tubes with varying I, ata =
0.02; Iy = 4.13; Re’ = 1100.

2. Mathematical Model. Velocity and Pressure Fields. As a test model we considered {3, 4] laminar motion of an
incompressible fluid, determined by the Navier ~Stokes and continuity equations in cylindrical coordinates in the form

ou Ou 1 dp Pu 0%y 1 0Ou
U —- —_— e —— —_— 1, 8
ox to or p 0x —i—v( or? + Ox? + r Or ) ®

dv dv 1 op - dh fozy) 1 oo
u — = — , 9
o0x e or p Or +V( or? + O0x? + r 6r) ©

1 0{rv) ou

i U2 R S 10
r Or + 0x (10)

with the usual boundary conditions: for r = r; at the wallu = v = 0; for r = Q on the axis v = 0, du/dr = 0.

Unlike stabilized motion in a circular tube, for which no transverse velocity exists, while the longitudinal component
u(r) depends on the radius only and the pressure on x only, i.e., dp/or = 0, in a tube with a periodically varying transverse
cross section u(r, x) = u(r, x + lp), v(r, X) = v(r, x + lp), while for the pressure p(r, x) and the derivative dp/dx(r, x) =
ap/ox(r, x + ly).

As usual, to obtain the velocity fields u and v numerically one writes Eqgs. (8)-(10) in vorticity w and stream function
Y variables, to find the pressure field one applies the divergence operation to Egs. (8) and (9), and, combining them, Poisson
equations are obtained. The three equations with correspondingly varying boundary conditions are adequate for numerical
integration of any contour of the TVC.

To provide universal boundary conditions by replacing the variable r by % = r/r; all possible TVC contours were
transformed to a rectangular region. The transformed equations with the corresponding boundary conditions for the rectangular
region were carried out by numerical integration with a finite-difference method [3, 5].

As a result of the calculation we obtained: the stream function y, the vorticity w, the velocity fields u, v and the
pressure field p in a wide range of geometric characteristics (I = 2; 4.13; 10; 20; I, = 0.3-0.9; a = 0.01-0.05) for sinusoidal
formations and Reynolds numbers Re’ = 500-1700.

Not considering the stream function and vorticity fields obtained in the present paper, we provide only several
calculation results of the velocity and pressure fields.

Figure 2 shows the variation with length in the dimensionless velocity along the axis for the geometric exit cone
portions [, = 0.45, 0.75, and 0.85. It is seen from analyzing the curves that, first, the extreme velocity values usually do not
coincide with the geometric extrema. Thus, the minimum velocity points are displaced from the flow relative to the points of
maximum transverse cross section for all /.. This displacement decreases in this case with increasing l.. Second, despite that,
the total length of hydrodynamic exit cone portions is somewhat larger than the corresponding geometric lengths. Thus, for
I, = 0.45 it is approximately 0.5, and for [, = 0.85— around 0.9. Assuming that the larger the exit cone length the smaller
the friction, it then follows that for /, = 0.85 we have the smallest friction resistance. This indeed occurred in the subsequent
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Fig. 4. Distribution of dimensionless pressure along a tube of varying cross
section for Re’ = 1100; [y = 4.13; ¢ = 0.02; /, = 0.45.

determination of friction. Third, if this is not a calculation error, then in some cases (I, = 0.75) a local nozzle (I, = 0.75,
points 3-7) can appear in the geometric exit cones.

To analyze the velocity profiles in a TVC we show in Fig. 3 the variation of the ratio of maximum velocity at the axis
u,,, to the mean velocity over the cross section /0, .., = ng. It is well known that in a CT ny = 2, corresponding to a profile
in the form of a quadratic parabola (Poiseuille).

These curves contain quite interesting qualitative information. Thus, the portion with ny > 2, i.e., where the velocity
profiles are more prolonged, can be assumed to be the region in which the velocity gradient is at the wall, and consequently
the friction is less than in a CT, while in the portion ny < 2, on the other hand, the velocity profile is more filled and the
friction stress is larger than in CT. We recall that when the quantity ng is of order 1.4 and less, the flow becomes turbulent.
In Fig. 3 the region with ny > 2 corresponds approximately in magnitude to I, values, i.e., to exit cone portion lengths.

The difference between largest and smallest ny values, equal to Ang, corresponds qualitatively to the value of velocity
profile deformation. Since the shape hydrodynamic resistance is expressed by energy losses on the deformed velocity profile
(they are absent in a CT), then, consequently Any, and, more accurately, the difference in mean ny values for ng larger and
smaller than 2, makes it possible to estimate qualitatively the value of the shape resistance. These differences are not large in
Fig. 3, since the amplitude value is low (@ = 0.02). It can be noted, however, that for [, = 0.85, Ang is smaller than for [,
= (.45, and consequently, the shape resistance at [, = 0.45 can be larger than for [, = 0.85.

The pressure field was calculated by the corresponding Poisson equation. As an example we show the pressure field
(Fig. 4) for [, = 0.45; @ = 0.02 and [ = 4.13. It can be verified that at the inlet to the exit cone (cross sections 1-13) the
pressure at the wall is lower than at the axis, and consequently dp/dr < 0, at cross section 14 the pressure is constant 3p/ar
= 0, further on (cross sections 15-33) the derivative changes sign, in cross section 34 it vanishes again, and beyond cross
section 34 it becomes negative again. This nature of pressure variation is observed for all other TVC. Two cross sections have
always occurred in which dp/dr vanished. The first of them is in the exit cone portion, and the second — in the nozzle.

We are unaware of studies for nonsymmetric waves. Verification of the calculation algorithm, carried out by
comparison with the results obtained for I, = 0.5 [5], gave good agreement.

3. Hydrodynamic Resistance. The total hydrodynamic resistance of the TVC was determined by the pressure drop
at the corresponding cross sections. In the mathematical model it was obtained from the Poisson equations, and experimentally
~ by direct measurements.
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Fig. 5. Distribution of local hydrodynamic resistance friction coefficients c;
over the length of the exit cone —nozzle section for various /,, values for Re’
= 1100; Iy = 4.13; a = 0.06.

TABLE 2. Ratio of Total Resistance, Friction and Shape Resistance
Coefficients of TVC to CT

Re” A Ay Xe
a=0,01 ’ a=0,02 a=0,03 a=0,03

500 0,867 0,766 0,665 0,305 0,360
700 0,815 0,668 0,611 0,269 0,343
900 0,740 0,575 0,526 0,252 0,274
1100 0,669 0,503 0,436 0,235 0,201
1300 0,615 0,435 0,367 0,226 0,141
1500 0,561 0,386 0,289 0,210 0,089
1700 0,525 0,351 0,230 0,201 0,029

In the numerical experiment one can determine the isolated friction value and find the shape (pressure) resistance from

the velocity fields.
The local friction coefficient c; is determined by the equation:

2 / 0 2
_ PUmean) “y ) PU mean
where uj is the local velocity, paraliel to the tube wall.
The total friction resistance coefficient A; was determined from the equation:

1 ¢
)uf = — dex.
!

Figure 5 shows the variation in the local friction coefficient ¢;at a = 0.06; Re’ = 1100 and [ = 4.13 for I, varying
- from 0.33 to 0.91. Also given is the straight line (¢, = 1.21) for the cylindrical tube. It is seen that for small [ (0.33, 0.5,
and 0.67) portions occur in a TVC at the nozzle and beginning of the exit cone regions, in which c;, and consequently the
friction stress as well, are larger than in a cylindrical tube. It is easily noticed that the length of these portions decreases with
increasing 1,. At I, = 0.33 it is nearly 0.51, at [, = 0.5 it increases to approximately 0.6/, and at I, = 0.67 — t0 0.75;,.
Further increase in I, (0.83 and 0.91) leads to the whole TVC region having a c¢ smaller than for the cylindrical tube.

The ratio of areas, shaded by vertical lines, to the areas shaded by the inclined lines (Fig. 5) shows what part
distinguishes the friction force of the TVC at [, = 0.91 from the friction force for a cylindrical tube. It equals 0.67. At I,
= .75 it equals 0.83, while for I, = 0.67, 0.5, and 0.33 it is 1.26, 1.47, and 1.72, respectively.

The effect of the Re’ number on the total resistance coefficient of a TVC (friction and shape), referenced to the
corresponding coefficient of a CT, is given in Table 2 within the Re’ limits from 500 to 1700. It is seen that for I, = 0.75
this quantity decreases substantially with increasing Re’ for all three amplitudes: for 4 = 0.01 — from 0.867 to 0.525, and
for 4 = 0.03 — from 0.665 to 0.23.

In the same table we show separately for 4 = 0.03 the variation in the corresponding ratio of shape and friction
coefficients. It is seen that for the mentioned increase in Re’ the first decreases more quickly (from 0.36 to 0.03) than the

second (0.3 and 0.2).
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To verify the results of the mathematical simulation we carried out a physical experiment on a TVC with [, = 0.25,

0.5, and 0.75; ¢ = 0.05 and 0.09; [y = 2.06; 4.13 for Re = (0. 15-1.08)~105. Figure 6 shows the commonly accepted
dependences of log(100A) on logRe for circular cylindrical tubes for laminar and turbulent motions and the curves obtained

from theoretical calculations for small Re and from experiment at large Re for a TVC.

From analyzing the dependences shown in Fig. 6 it follows that by varying the geometric characteristics of a TVC one
can obtain both an increase and a decrease in the hydrodynamic resistance coefficients in comparison with an ordinary circular
cylinder. In this case these variations can be carried out over the whole range of Re numbers, i.e., for both laminar and
turbulent motions.

The maximum reduction in the mathematical simulation reached a value of 5 times (Table 2), while the experimental
value was 2 times less than the resistance of a cylindrical tube, corresponding to loss reductions by more than 60 and 40%.
We recall that small additions of polymers and SAM can affect the resistance only for turbulent motion.

The decrease in resistance is a major problem for tubes performing transport functions. For heat exchangers and tubes
designed for chemical technology optimal transport coefficients can usually be obtained by increasing the resistance coefficients.
Consequently, consistently with the Reynolds analogy, wavy tubes make it possible to control transport processes in general,
i.e., not only the hydrodynamic resistance, but also heat and mass transfer.

Contemporary technology does not allow one to create nearly natural surfaces, such as blood vessels (compliant, easily
varying their shape under the action of flow, and guaranteeing physicochemical and physiological processes), which create
conditions for long duration (dozens of years) of livelihood activity of organisms.

The first step in approaching more perfect natural processes — the creation of tubes with rigid walls, but with varying
cross section with length — is a real problem, and the energy saving effect requires extensive application of asymmetric wavy
tubes.

NOTATION

Here the geometric parameters are: a is the amplitude in m, J is the length of the exit cone portion in m,  is the wave
length in m, rg is the radius of a straight tube, equal to the mean radius of a tube with varying cross section, in m, x and r are
the longitudinal and radial coordinates in m, r(x) is the radius of a tube of varying cross section in m, & = a/rg is the
dimensionless amplitude, /, = [/l is the dimensionless length of the exit cone, Iy = Iy/2r, is the dimensionless wave length,
X = 2wx/l is the dimensionless longitudinal coordinate, T = r/rg is the dimensionless radial coordinate, T, = r/ry is the
dimensionless radius of a tube of varying cross section, and § = r/r is the dimensionless radial coordinate, introduced in
transition to the rectangular region. The hydrodynamic parameters are: u, v are the longitudinal and transverse components
of the velocity vector in m/sec, p is the density in kg/m3, v is the kinematic viscosity coefficient in m?/sec, p is the dynamic
viscosity coefficient in kg/(m-sec), w is the vorticity in 1/sec, y is the stream function in m/sec, Q is the bulk discharge in
m?/sec, Upean IS the mean discharge velocity in m/sec, p is the pressure in N/m?, { is the dimensionless stream function, &
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is the dimensionless vorticity, i = ur/Q is the dimensionless longitudinal component of the velocity vector, v = vrg?/Q is
the dimensionless radial component of the velocity vector, p = p/(pupe,,) is the dimensionless pressure, AP, is the
dimensionless pressure drop in a CT, Ap is the dimensionless pressure drop ina TVC, C; = Tw/(pumeaHZ/Z) is the local friction
resistance coefficient, A¢is the friction resistance coefficient, A, is the pressure resistance coefficient, A, is the total resistance
coefficient in a TVC, Ay is the resistance of a CT, X, = \/Ag is the ratio of the total TVC resistance to the CT resistance, ¢
= \f/Ag is the ratio of the TVC friction resistance to the CT resistance, and X, = \./Ag denotes the ratio of the TVC pressure
resistance to the CT resistance.
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DISTRIBUTION OF VOLUME-AVERAGED
PARAMETERS OF VORTEX FLOW OVER THE
ENERGY SEPARATION CHAMBER OF A VORTEX
TUBE WITH SUPPLEMENTED FLOW

Sh. A. Piralishvili and V. M. Kudryavtsev UDC 621.565.3/088.8

The profiles of averaged circular and axial velocity components, temperature, and pressure are measured in
the axisymmetric channel of the energy separation chamber of a vortex tube with the introduction of additional
flow in the near-axis zone on the side cross section where throttle is located.

In a series of engineering devices (vortex burners, plasma production apparatus, vortex igniters, and projected power
equipment), the preferred, and sometimes the only method for controlling the mass and heat transfer is to sharply whirl the
flow as it flows along an axisymmetric channel. Vortex flow in the energy separation chambers of vortex tubes is one of the
most complex and incompletely understood methods. While the gas dynamics of counterflow separation vortex tubes is known
[1, 2], there are no publications of such investigations of double-contour tubes. At the same time, knowledge of the nature of
the distribution of thermodynamics and kinematic flow parameters is important for developing an adequate physical and
mathematical model, in order to perfect further the energy separation processes in these tubes. This is even more important
because today these tubes have the highest adiabatic efficiency, as computed from the overall characteristics of the process for
cooling part of the gas. In some tubes the cooled gas mass flow exceeds the initial flow {2, 3].

The investigation was conducted on a unit whose working section was a conical axisymmetric vortex tube with a
minimum diameter of the separation chamber d; = 0.03 m and with a cone angle ¥ = 15°; the relative length of the energy
separation chamber was [ = L/d; = 9. The relative area of the nozzle input F, = F /F, was measured from 0.02 to 0.1 in
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